Tix Programming Guide

To1 K. Lam

0.1 About This Manual

This manual is the programmer’s guide to the Tix library. It takes you though a step-
by-step tutorial about the different widgets and functions available in the Tix library. It
also covers how to write new widgets using the Tix Intrinsics objecr-oriented programming
interface. The accompanying T4z Reference Manual is a collection of the Tix manual pages.
It describes all the options and other details of the Tix widgets and functions.

0.2 Other Formats Of This Document

This document 1s also available both postscript and HTML format. The postscript format
is available at ftp://ftp.xpi.com/pub/tix-4.0.ps.gz. The HTML format is available
from http://www.xpi.com/tix/doc/tix-4.0/tix.book.html

0.3 Organization of This Manual

Chapter 1, Introduction gets you started with the Tix widgets by describing their basic
options and operations. Chapter 2, Container Widgets, describes the Tix widgets that can
be used to contain other widgets and maintain their geometry. Chapter 3, T'List Widget
and Display Items, describes the tabular listbox widget and the Tix display items, which
are used by many Tix widgets. Chapter 4, Hierarchical Listboz, describes how to create
a hierarchical list structure using the TixHList widget. Chapter 5, Selection Files and
Durectories, describes how to use the file and directory selection widgets in the Tix library.
Finally, Chapter 6, Tiz Object Oriented Programmaing, describes how to use the Tix object
oriented programming library to create new classes of Tix widgets.

Contents

0.1 About This Manual
0.1.1 Other Formats Of This Document
0.2 Organization of This Manual

1 Introduction
1.1 What is Tix . . . 0 o0 00 e
1.1.1 Tix for Application Programmers
1.1.2 Tix for Widget Developers.
1.2 Getting Started: the TixControl Widget
1.2.1 Creating a TixControl Widget
1.2.2 Accessing The Value of a TixControl Widget
1.2.3 Validating User Inputs L L.
1.3 Accessing The Components Inside Mega Widgets
1.3.1 Subwidgetso
1.3.2 Subwidget Names o
1.3.3 The subwidget Method 0.
1.3.4 Chaining the subwidget Method
1.3.5 Configuring Subwidget Options Using the —options Switch
1.3.6 Configuring Subwidget Options Using the Tk Option Database
1.3.7 Caution: Restricted Access L L.
1.4 Another Tix Widget: TixComboBox
1.4.1 Creating a TixComboBox Widget
1.4.2 Controlling the Style of the TixComboBox
1.4.3 Static Options
1.4.4 Monitoring the User’s Browsing Actions
1.5 The TixSelect Widget L
1.5.1 Creating A TixSelect Widget
1.5.2 Specifying Selection Rules
1.5.3 Accessing the Value of a TixSelect Widget
1.5.4 Specifying Complex Selection Rules

2 Container Widgets
2.1 TixNoteBook
2.1.1 Adding Pages to a TixNoteBook
2.1.2 Keyboard Accelerators
2.1.3 Delaying the Creation of New Pages
2.1.4 Changing Page Tabs and Deleting Pages

3

CONTENTS

2.2 PanedWindow 26
2.2.1 Adding Panes Inside a TixPanedWindow Widget 26
2.2.2 Putting Widgets Inside the Panes 27
2.2.3 Setting the Order of the Panes 28
2.2.4 Changing the Sizes of the Panes 28

2.3 The Family of Scrolled Widgets 28
2.3.1 The Scrolled Listbox Widget 29
2.3.2 Other Scrolled Widgetso 30

Tabular Listbox and Display Items 31

3.1 tixTList — The Tix Tabular Listbox Widget 31

3.2 Display Items 32
3.2.1 Advantages of Display Items 33
3.2.2 Display Items and Display Styles 33

3.3 Creating Display Items in the TixTList Widget 34
3.3.1 Creating Display Items 34
3.3.2 Setting the Styles of the Display Items 35
3.3.3 Configuring and Deleting the Items 36
3.3.4 Choosing the Orientation and Number of Rows or Columns 37
3.35 Event Handling 37
3.3.6 Selection L 38

Hierarchical Listbox 41

4.1 TixHList — The Tix Hierarchical Listbox Widget 41
4.1.1 Creating a Hierarchical List 41
4.1.2 Creating Entries in a HList Widget 41
4.1.3 Controlling the Layout of the Entries 43
4.1.4 Handling the Selection and User Event 44

4.2 Creating Collapsible Tree Structures with TixTree 44

Selecting Files and Directories 47

5.1 File Selection Dialog Widgets 47
5.1.1 Using the TixFileSelectDialog Widget 47
5.1.2 The Subwidget in the TixFileSelectDialog 49
5.1.3 The TixExFileSelectDialog Widget 49
5.1.4 Specifying File Types for TixExFileSelectDialog 50
5.1.5 The tix filedialog Command 50

5.2 Selecting Directories with the TixDirTree and TixDirList Widgets 51

Tix Object Oriented Programming 53

6.1 Introduction to Tix Object Oriented Programming 53
6.1.1 Widget Classes and Widget Instances 54
6.1.2 What is in a Widget Instance o000 54

6.2 Widget Class Declaration 55
6.2.1 Using the tixWidgetClass Command 55

6.3 Writing Methods Lo 57
6.3.1 Declaring Public Methods 58

6.4 Standard Initialization Methods oo 58

6.4.1 The InitWidgetRec Method 58

CONTENTS 5

6.5

6.6
6.7

6.4.2 The ConstructWidget Method 60
6.4.3 The SetBindings Method 0oL 61
Declaring and Using Variables o0 61
6.5.1 Initialization of Public Variables 62
6.5.2 Public Variable Configuration Methods 64
Summary of Widget Instance Initialization 65

Loading the New Classes 66

CONTENTS

Chapter 1

Introduction

1.1 What i1s Tix

1.1.1 Tix for Application Programmers

The acronym Tix stands for Tk Interface Extension. Tix is different things for different
people.

If you are a GUI application programmer, that is, if you earn a living by building
graphical applications, you will appreciate Tix as a library of mega-widgets: widgets made
out of other widgets. To use a crude analogy, if the widgets in the standard TK library are
bricks and mortars for a builder, the mega-widgets in the Tix library are walls, windows
or even pre-build kitchens. Of course, these “bigger components” are themselves made of
bricks and mortars, but 1t will take much less effort to put them together than planting
bricks on top of each other.

The Tix widgets not only help you speed up the development of your applications, they
also help you in the design process. Since the standard Tk widgets are too primitive, they
force you to think of your house as, by using the same analogy, millions of bricks. With
the help of the Tix mega-widgets, you can design your application is a more structural and
coherent manner.

Moreover, the Tix library provides a rich set of widgets. Figure 1.1 shows all Tix widgets
—there are more than 40 of them! Although the standard Tk library has many useful widgets,
they are far from complete. The Tix library provides most of the commonly needed widgets
that are missing from standard Tk: FileSelectBox, ComboBox, Control (a.k.a. SpinBox) and
an assortment of scroll-able widgets. Tix also includes many more widgets that are generally
useful in a wide range of applications: NoteBook, FileEntry, PanedWindow, MDIWindow,
etc.

With all these new widgets, you can introduce new interaction techniques into applica-
tions, creating more useful and more intuitive user interfaces. You can design your applica-
tion by choosing the most appropriate widgets to match the special needs of your application
and users.

CHAPTER 1. INTRODUCTION

Primitive ﬂ ButtonBox H StdButtonBox

ExFileSelectBox
FileSelectBox

— LabelWidget . ComboBox

Control
FileEntry
LabelFrame

OptionMenu

Select

Meter

—{ sl E

1

Balloon

- Didogsel [— SDidogshel ExFileSdectDialog

PopupMenu FileSelectDialog

— ScrolledWidget ScrolledGrid

T
@
=5
8
I
[
728

CheckList

DirTree

|
- suolledLisBox | DirList |
|
|

i
@@
S|le
8 |8
Ik
S_a.’_"

Tree

ScrolledWindow

— VResize ResizeHandle

— VStack ListNoteBook

NoteBook

StackWindow

Virtual Base Class

Figure 1.1: The Class Hierarchy of Tix Widgets

1.2. GETTING STARTED: THE TIXCONTROL WIDGET 9

1.1.2 Tix for Widget Developers

On the other hand, if you are a widget developer, Tix provides an object oriented pro-
gramming environment, the Tix Intrinsics, that is carefully designed for the development of
mega-widgets. If you have developed widgets in C, you will know how slow and painful such
a process would be. In recognition of the difficulties in widget development, the Tix Intrin-
sics includes many tools that dramatically cuts down the efforts required to develop new
widgets. With the Tix Intrinsics, the rapid prototyping/development of widgets is finally
feasible: you can write a new widgets in the matter of hours or even minutes.

With the Tix Intrinsics, you widget code can readily become reusable. Tix also provides
a set of rules and mechanisms that allow you to develop widgets that are inter-operable with
other widgets.

In Part I of this manual, we will talk about using the Tix widgets. The discussion of
writing new Tix widgets will be carried out in Part II.

1.2 Getting Started: the TixControl Widget

Pre-requisites: you should be familiar with Tk widgets and programming, or read the Tk book
along with this book

Before delving into the deep philosophy of the Tix widgets, let us first have a quick
example to demonstrate the usefulness and convenience of an Tix widget: the TixControl
is basically an entry widget that displays a value. Next to the entry, there are two up and
down arrow buttons for you to adjust the value inside the entry widget.

1.2.1 Creating a TixControl Widget

The following code demonstrates how to create a TixControl widget and specify its options:

tixControl .lawyers -label Lawyers: -max 10 -min O
.lawyers config —integer true -step 2

This example creates a TixControl widget that let us to select the numbers of lawyers we
wish to be allowed in this country. (Figure 1.2)

Let us examine the options: the -label option specifies a caption for this widget. The
-max option specifies the maximum number of lawyers we can choose. The -min option
specifies the minimum number of lawyers we can choose: although we would love to enter
a negative number, reality dictate that the lower limit must be zero. The —integer option
indicates that the number of lawyers must be an integer; that is, we respect the lawyers’
rights not to be chopped up into decimal points. Finally, since lawyers seem to go in pairs, we
set the —step option to 2, which indicates that when we press the up/down arrow buttons,
we want the number of lawyers to go up and down by two each time.

As shown in the example, you can create and manipulate a Tix widget in the same
manner as the standard Tk widgets. The options of the widget can be specified during

10 CHAPTER 1. INTRODUCTION

Lawers:- g

Figure 1.2: The TixControl Widget
. =1
Lavryers: \ i /
ol
F
Lawvyers: Ell _—
Figure 1.3: The Composition of TixControl

the creation of the widget. Alternatively, they can be changed by the configure widget
command. In addition, options can also be specified in the option database or as X resources.
Here 1s an example that produces the same result as the previous code fragment:

option add *lawyers.max 10

option add *lawyers.min O

tixControl .lawyers -label Lawyers: —integer true
.lawyers config -step 2

In figure 1.3, you can see the composition of TixControl: it is made out of a label widget,
an entry widget and two button widgets. Widgets that are composed of other widgets, like
TixControl, are called mega-widgets. Most widgets in the Tix library are mega-widgets (xx:
and as you know this book is about them!).

1.2.2 Accessing The Value of a TixControl Widget

The TixControl widget allows the user to input a value. There are several ways to read
this value in your program. First of all, TixControl stores the current value in the -value
option. You can use query the —value option by calling the command

.c cget -value

this command will return the current value of the tixContro widget .c. The following
command sets the value of the widget to a new number (100):

.c config -value 100

The second way to access the value of TixControl is to use the -variable option. This
options instructs the TixControl widget to store the its value into a global variable so that

1.2. GETTING STARTED: THE TIXCONTROL WIDGET 11

you can read it at any time. Also, by assigning a new value to this global variable, you can
change the value of the TixControl widget. Here is an example:

.c config -variable myvar
set myvar 100

In some situations, you may want to be informed immediately when the value of the TixCon-
trol widget changes. To accomplish this, you can use the —command option. The following
line causes the TCL procedure valueChanged to be called whenever the value of . ¢ changes:

tixControl .c —command valueChanged

Disabling Callbacks Temporarily

Now, if you want to change a value from within the program, you have to disable the
callback. The reason is that the callback runs whenever you (as well as the user) makes
a change. In particular, if you make a change within the callback procedure and forget to
disable the callback, it will recursively call itself and enter an infinite loop. To avoid this
problem, you should use the —disablecallback option. Here is an example:

tixControl .c -command addOne

proc addOne {value} {
.c config -disablecallback true
.c config -value [incr value]
.c config -disablecallback false

The procedure addOne adjusts the value of .c¢ by one whenever the user enters a new value
into .c. Notice that it is necessary to set —disablecallback here or otherwise addOne will
be infinitely recursed! That is because addOne is called every time the value changes, either
by the user or by the program.

1.2.3 Validating User Inputs

Sometimes it may be necessary to check the user input against certain criteria. For example,
you may want to allow only even numbers in a TixControl widget. To do this, you can use
the —validatecmd option, which specifies a Tcl command to call whenever the user enters
a new value. Here is an example:

tixControl .c -value 0 -step 2 -validatecmd evenOnly

proc evenOnly {value} {
return [expr $value - ($value %2)]

}

12 CHAPTER 1. INTRODUCTION

entry

-
~

. ol |
Lawyers: - _—

Figure 1.4: Subwidgets inside TixControl Widget

~] incr
| abel Lawyers: -

=l decr

The value parameter to evenOnly is the new value entered by the user. The evenOnly
procedure makes sure that the new value is even by returning a modified, even number.
The Tecl command specified by the —validatecmd must return a value which it deems valid
and this value will be stored in the —value option of the TixControl widget.

1.3 Accessing The Components Inside Mega Widgets

1.3.1 Subwidgets

As we have seen in section 1.2.1, the TixControl widget is composed of several widgets:
one label widget, one entry widget and two button widgets. These “widgets inside mega-
widgets” are called subwidgets in the Tix terminology. We will often have the need to access
these subwidgets. For example, sometimes we need to change the configuration options of
the subwidgets. In other cases, we may need to interact with the subwidgets directly.

1.3.2 Subwidget Names

Each subwidget inside a mega is identified by a subwidget name. Naturally, the label and
entry subwidgets inside a TixSelect widget are called label and entry, respectively. The
two button widgets are called incr and decr because they are used to increment and
decrement the value inside the TixControl widget (see figure 1.4).

1.3.3 The subwidget Method
All Tix mega-widgets support the subwidget method. This method takes at least one
argument, the name of a subwidget. When you pass only one argument to this method, it

returns the pathname of the subwidget which is identified by that name. For example, if .c
is the pathname of a TixControl widget, the command:

.c subwidget entry

returns the pathname of the entry subwidget, which i1s .c.frame.entry in this case.

1.3. ACCESSING THE COMPONENTS INSIDE MEGA WIDGETS 13

If you call the subwidget method with additional arguments, the widget command of
the specified subwidget will be called with these arguments. For example, if .c is, again,
the pathname of a TixControl widget, the command:

.c subwidget entry configure -bg gray

will cause the widget command of the entry subwidget of . ¢ to be called with the arguments
configure -bg gray. So actually this command will be translated into the following call:

.c.frame.entry configure -bg gray

which calls the configure method of the entry subwidget with the arguments -bg gray
and changes its background color to gray.

We can call the subwidget method with other types of arguments to access different
methods of the specified subwidget. For example, the following call:

.c subwidget entry icursor end

calls the icursor method of the entry subwidget with the argument end and sets the insert
cursor of the entry subwidget to the end of its input string.

1.3.4 Chaining the subwidget Method

Some Tix mega-widgets may have subwidgets that in turn contain subwidgets. For example,
the TixExFileSelectDialog (section 5.1.3) widget contains a TixExFileSelectBox subwidget
called fsbox, which in turn contains a TixComboBox (section 1.4) subwidget called dir.
If we want to access the dir subwidget, we can just “chain” the subwidget method. For
example, if we have a TixExFileSelectDialog called .file, the following command will
return the pathname of the dir subwidget of the fsbox subwidget of .file:

.file subwidget fsbox subwidget dir

Moreover, the following command configures the dir subwidget to have a border of the
groove type with a border width of 2 pixels:

.file subwidget fsbox subwidget dir configure -bd 2 -relief groove

The chaining of the subwidget command can be applied for arbitrarily many levels,
depending whether your widget has a subwidget that has a subwidget that has a subwidget
that has a subwidget ... and so on.

14 CHAPTER 1. INTRODUCTION

Age: | — Age: [

—| tiwish | | | —| tixwish o =)
Income: |0 g Income: |0
|

e |

(a) Unaligned Labels (b) Aligned Labels

Figure 1.5: Using the —options Switch to Align the Labels

1.3.5 Configuring Subwidget Options Using the -options Switch

As we have seen above, we can use commands like “subwidget name configure ...” to
set the configuration options of subwidgets. However, this can get quite tedious if we want
to configure many options of many subwidgets.

There is a more convenient and terse way to configure the subwidget options without
using the subwidget method: the -options switch. All Tix mega-widgets support the
—option switch, which can be used during the creation of the mega-widget.

Program 1.1 Using the -options switch

tixControl .income -label "Income: " -variable income -options {
label.width 8
label.anchor e
entry.width 10
entry.borderWidth 3
b
tixControl .age -label "Age: " -variable age -options {
label.width 8
label.anchor e
entry.width 10
entry.borderWidth 3
b

pack .income .age -side top

The use of the —options switch is illustrated in program 1.1, which creates two Tix-
Control widgets for the user to enter his income and age. Because of the different sizes of
the labels of these two widgets, if we create them haphazardly, the output may look like fig
1.5(a).

To avoid this problem, we set the width of the label subwidgets of the .income and
.age widgets to be the same (8 characters wide) and set their —anchor option to e (flushed
to right), so that the labels appear to be well-aligned. Program 1.1 also does other things

1.3. ACCESSING THE COMPONENTS INSIDE MEGA WIDGETS 15

such as setting the entry subwidgets to have a width of 10 characters and a border-width of
3 pixels so that they appear wider and “deeper”. A better result is shown in figure 1.5(b).

As we can see from program 1.1, the value for the -options switch is a list of one or
more pairs of

subwidget-option-spec value ..

subwidget-option-spec is in the form subwidget-name. option-name. For example, label.anchor
identifies the anchor option of the label subwidget, entry.width identifies the width op-
tion of the entry subwidget, and so on.

Notice we must use the name of the option, not the command-line switch of the option.
For example, the option that specifies the border-width of the entry subwidget has the
command-line switch ~borderwidth but its name is borderWidth (notice the capitalization
on the name but not on the command-line switch). Therefore, we have used the capitalized
version of “entry.borderWidth 3” in program 1.1 and not “entry.borderwidth 3”. To
find out the names of the options of the respective subwidgets, please refer to their manual

pages.

1.3.6 Configuring Subwidget Options Using the Tk Option Database

The -options switch is good if you want to specify subwidget options for one or a few
mega-widgets. If you want to specify the subwidget for many mega-widgets, it is easier to
use the Tk Option Database.

Options in the Tk Option Database can be specified using the option command and the
pathname of the widget. For all the Tix mega-widgets, it is guaranteed that the pathname
of their subwidgets ends with the name of the subwidgets. For example, if we have a mega
widget called .a.b.megaw and it has a subwidget whose name is subw, then we can be sure
that the pathname of the subwidget will be something like

.a.b.megaw.foo.bar.subw

Therefore, if we want to specify options for it in the Option Database, we can issue commands

like:

option add *a.b.megaw*subw.optionl valuel
option add *a.b.megaw*subw.option2 value2

Notice that it will be wrong to issue the commands as:

option add *a.b.megaw.subw.optionl valuel
option add *a.b.megaw.subw.option2 value2

because in general we will not know whether the subwidget is an immediate child window
of .a.b.megaw .

Isuch a decision is left to the mega-widget implementor and may vary in different versions of the same
mega-widget

16 CHAPTER 1. INTRODUCTION

Program 1.2 demonstrates how the Tk Option Database can be used to achieve the same
effect as program 1.1.

Program 1.2 Using the Tk Option Database in Place of the —options switch

option add *TixControl*label.width 8
option add *TixControl*label.anchor e
option add *TixControl*entry.width 10

option add *TixControl*entry.borderWidth 3

tixControl .income -label "Income: " -variable income
tixControl .age -label "Age: " -variable age

pack .income .age -side top

1.3.7 Caution: Restricted Access

In the current implementation of Tix, there is no limits on how you can access the options of
the subwidgets. However, many options of the subwidgets may be already used by the mega-
widget in special ways. For example, the ~textvariable option of the entry subwidget of
TixControl may be used to store some private information for the mega widget. Therefore,
you should access the options of the subwidgets with great care. In general you should
only access those options that affect the appearance of the subwidgets (such as -font or
-foreground) and leave everything else intact.

1.4 Another Tix Widget: TixComboBox

The TixComboBox widget 1s very similar to the ComboBox widgets available in MS Win-
dows and Motif 2.0. A TixComboBox consists of an entry widget and a listbox widget.
Usually, the ComboBox contains a list of possible values for the user to select. The user
may also choose an alternative value by typing it in the entry widget. Figure 1.6 shows two
ComboBoxes for the user to choose fonts and character sizes. You can see fro the figure that
a listbox is popped down from the ComboBox for fonts for the user to choose among a list
of possible fonts.

1.4.1 Creating a TixComboBox Widget

In program 1.3, we set up a ComboBox .c for the user to select an animal to play with.
If the user is just a dull person like you and me, he would just press the arrow button and
select a pre-designated animal such as “dog”. However, if he wants to try something new,
he could type “micky” or “sloth” into the entry widget and he will get to play with his
favorite animal.

?In future versions of Tix, there will be explicit restrictions on which subwidget options you can access.
Errors will be generated if you try to access restricted subwidget options

1.4. ANOTHER TIX WIDGET: TIXCOMBOBOX 17

Helvetica ﬂ Ir g

B Helvetica
Lucida
Times BEoman

Figure 1.6: The TixComboBox Widget

Program 1.3 Creating a ComboBox
tixComboBox .c —label "Animal:" -editable true
.c insert end cat
.c insert end dog
.c insert end pig

Of course, sometimes we don’t want too many sloths around us and we want to limit
the range of the user’s selections. In this case we can do one of two things. First, we can
set the —editable option to false so that the user cannot type in the entry widget at all.
Alternatively, we can use the -validatecmd option (see section 1.4.3) to check input the
input.

1.4.2 Controlling the Style of the TixComboBox

The TixComboBox widget can appear in many different styles. If we set the —dropdown
option to true (which is the default), the listbox will only appear when the user presses the
arrow button. When -dropdown is set to false, the listbox is always shown and the arrow
button will disappear because it is not needed anymore.

There is also an option called —~fancy. It is set to false by default. When set to true, a
tick button and a cross button will appear next to the entry widget. The tick button allows
you to select again the value that’s already in the ComboBox. If you press the cross button,
the entry widget will be cleared.

1.4.3 Static Options

The -dropdown and -fancy options are so-called “static options”. They can only be set
during the creation of the ComboBox. Hence this code is valid:

tixComboBox .c —-dropdown true

But the following code will generate an error because it attempts to set the —dropdown
option after the ComboBox has already been created.

TixComboBox .c

18 CHAPTER 1. INTRODUCTION

.c config -dropdown true

The restrictions of the static options, although annoying, nevertheless make sense be-
cause we don’t want our interface to suddenly change its style. If sometimes a button is
there and sometimes it disappear all by itself, that will certainly create a lot of confusion
and makes the user wonder why he should buy our software. Also, as you will see in chapter
6, having some static options will make the life of widget writers a lot easier.

Accessing the value of the ComboBox is very similar to accessing the value of the Tix-
Control widget. The ComboBox has these four options, which we discussed in section 1.2.2:
-value, -variable, —~command and -validatecmd. You can use these four options to access
the user input and respond to user actions in exactly the same way as discussed in section
1.2.2.

1.4.4 Monitoring the User’s Browsing Actions

When the user drags the mouse pointer over the listbox, the listbox item under the pointer
will be highlighted and a “browse event” will be generated. If you want to keep track of
what items the user has browses through, you can use the -browsecmd option. Here is an
example:

tixComboBox .c —-browsecmd mybrowse

proc mybrowse {item} {
puts '"user has browsed $item"

}

When the Tcl command specified by the —browsecmd option is called, it will be called
with one parameter: the current item that the user has highlighted.

The -browsecmd is useful because it gives the user the possibility of temporarily seeing
the results of several choices before committing to a final choice.

For example, we can list a set of image files in a ComboBox. When the user single-clicks
on an item on the ComboBox, we want to show a simplified view of that image. After the
user has browsed through several images, he can finally decide on which image he wants by
double-clicking on that item in the listbox.

The following is some pseudo Tcl code that does this. Please notice that the ~browsecmd
procedure is called every time the user single-clicks on an item or drags the mouse pointer
in the listbox. The -command procedure is only called when the user double-clicks on an
item.

tixComboBox .c —-dropdown false -browsecmd show_simple —command load_fullsize
.c insert end "/pkg/images/flowers.gif"

.c insert end "/pkg/images/jimmy.gif"

.c insert end "/pkg/images/ncsa.gif"

1.5. THE TIXSELECT WIDGET 19

Ii‘_g ?I v IE::: - *?I

Figure 1.7: The TixSelect Widget

proc show_simple {filenamel} {
Load in a simplified version of $filename

}

proc load_fullsize {filename} {
Load in the full size image in $filename

}

As we shall see, all Tix widgets that let us do some sort of selections have the ~browsecmd
option. The -browsecmd option allows us to respond to user events in a simple, straight-
forward manner. Of course, you can do the same thing with the Tk bind command, but you
don’t want to do that unless you are very fond of things like <Control-Shift-ButtonRelease-1>
and "%x %X $w UW Yw".

1.5 The TixSelect Widget

The TixSelect widget figure 1.7 provides you the same kind of facility that is available with
the Tk radiobutton and checkbutton widgets. That is, TixSelect allows the user to select
one or a few values out of many choices. However, TixSelect is superior because it allows
you to layout the choices in much less space than what is required by the Tk radiobutton
widgets. Also, TixSelect supports complicated selection rules. Because of these reasons,
TixSelect is a primary choice for implementing toolbar buttons, which often have strict
space requirements and complicated selection rules.

1.5.1 Creating A TixSelect Widget

Program 1.4 shows how to create a TixSelect widget. At line 1 of program 1.4, we create a
TixSelect using the the tixSelect command.

Program 1.4 Creating a TixSelect Widget
tixSelect .fruits -label "Fruits: " -orientation horizontal
.fruits add apple -text Apple -width 6
.fruits add orange -text Orange -width 6
.fruits add banana -text Banana -width 6
pack .fruits

20 CHAPTER 1. INTRODUCTION

—|thowd| - | 1|

Fruits:

Apple

—| thawish -] N

Fruns:l Apple Orange | Banana 7

Banana |

(a) Horizontal Orientation (b) Vertical Orien-
tation

Figure 1.8: The TixSelect Widget

Label and Orientation

As shown in program 1.4, with the -label option, we can put a label next to the button
subwidgets as the caption of the TixSelect widget. We can also control the layout of the
button subwidgets using the —orientation option. The —orientation option can have two
values: horizontal (the default value) or vertical, and the buttons are lied up accord-
ingly. Figure 1.8(b) shows the output of a TixSelect widget whose —orientation is set to
vertical.

Creating the Button Subwidgets and Configuring Their Appearance

After we have created the TixSelect widget, we can create the button subwidgets inside the
TixSelect widget by the add widget command (lines 2-4 of program 1.4).

The first argument to the add command is the name of the button subwidget. Additional
arguments can be given in option-value pairs to configure the appearance of the button
subwidget. These option-value pairs can be any of those accepted by a normal TK button
widget. As shown in program 1.4, we use the —text option to put appropriate text strings
over the three button subwidgets.

Notice that we also set the —width option of all the button subwidgets to 6 characters.
This way, the three buttons will have the same width. If we didn’t set the —width option
for the button widgets, they will have different widths, depending on their text string, and
the result would look less esthetically pleasing than buttons with same widths.

The output of program 1.4 is shown in figure 1.8(a)

Accessing the Button Subwidgets

We have already seen the concept of subwidgets and how they can be accessed in section 1.3.1
— when we create a Tix mega-widget, some subwidgets are created for us automatically.
For example, the label and entry subwidgets inside a TixControl widget. We can access

1.5. THE TIXSELECT WIDGET 21

these subwidgets in a multitude of ways, including using the subwidget method.

One thing about the subwidgets we saw in section 1.3.11s that they are “static”, meaning
they are created when the mega-widget is created and they remain there for the whole
lifetime of the mega-widget.

The TixSelect widget takes us to a new concept: dynamic subwidgets are subwidgets
that can be created on-the-fly. After we add a new button into the TixSelect widget, we get
a new subwidget. The name of this new subwidget is given by the first parameter passed
to the add method. As the following code demonstrates, we can access this new subwidget
using the subwidget method:

tixSelect .s

.8 add apple -text Apple

.8 add orange -text Orange

Mmmm..., let’s make the widget look more educated
by using French words

.s subwidget apple config -text Pomme

.s subwidget orange config -text Orange

1.5.2 Specifying Selection Rules

For simple selection rules, you can use the —allowzero and —radio options. The —allowzero
option specifies whether the user can select none of the choices inside the TixSelect widget.
The -radio option controls how many buttons can be selected at once: when set to true,
the user can select only one button at a time; when set to false, the user can select as many
buttons as he desires.

With these two options, we can write a program using two TixSelect widgets for little
Jimmy to fill up his lunch box. On the Sandwich side, we set ~radio to true and -allowzero
false. That means Jimmy can select one and only one sandwich among beef, cheese or ham
sandwiches. On the Veggie side, we want to encourage Jimmy to consume as much veggie
as possible, so we set the —allowzero option to false. We also set the ~allowzero option
to false so that Jimmy cannot get away with eating none of the vegetables (see program

1.5).

Program 1.5 Specifying Simple Selection Rules

tixSelect .sandwich -allowzero false -radio true -label '"Sandwich :"
.sandwich add beef -text Beef

.sandwich add cheese -text Cheese

.sandwich add ham -text Ham

tixSelect .vege -allowzero false -radio false —-label "Vegetable :"
.vege add bean -text Bean

.vege add carrot -text Carrot

.vege add lettuce —-text Lettuce

22 CHAPTER 1. INTRODUCTION

1.5.3 Accessing the Value of a TixSelect Widget

The walue of a TixSelect widget is a list of the names of the button subwidgets that are
currently selected. For example, in program 1.4, if the user has selected the apple button,
then the value of the TixSelect widget will be apple. If the user has selected both the apple
and the orange buttons, then the value will be the list "apple orange'.

The TixSelect widget supports same set of options as the TixControl widget for you
to access its value: the -value option stores the current value, which can be queried and
modified using the cget and configure methods. You can also use the -variable option
to specify a global variable to store the value of the TixSelect widget. The -command
option specifies a TCL command to be called whenever the user changes the selection inside
a TixSelect widget. This command is called with one argument: the new value of the
TixSelect widget. There 1s also the ~disablecallback option which you can use to control
whether the command specified by the —command option should be called when the value of
the TixSelect changes.

1.5.4 Specifying Complex Selection Rules

If you want to have more complex selection rules for the TixSelect widget, you can use
the —validatecmd option. This option works the same as the —validatecmd option of the
TixControl widget which we discusses in section 1.2: it specifies a command to be called
every time the user attempts to change the selection inside a TixSelect widget.

In the example program 1.6, the procedure TwoMax will be called every time the user
tries to change the selection of the .fruits widget. TwoMax limits the maximum number of
fruits that the user to choose to be 2 by always truncating the value of the TixSelect widget
to have no more than two items. If you run this program, you will find out that you can
never select a third fruit after you have select two fruits.

Program 1.6 Specifying More Complex Selection Rules
tixSelect .fruits -label "Fruits: " -radio false -validatecmd TwoMax
.fruits add apple -text Apple -width 6
.fruits add orange -text Orange -width 6
.fruits add banana -text Banana -width 6
pack .fruits

proc TwoMax {value} {
if {[1llength $value] > 2} {
return [lrange $value 0 1]
} else {
return $value

}

Chapter 2

Container Widgets

In addition to providing some nice-looking interface elements, Tix offers some useful ways
to organize the elements that you create. It does this by providing container widgets, which
are widgets designed to contain whatever you want to put into them.

Different container widgets have different policies as to how they arrange the widgets
inside them. In this chapter, we’ll talk about TixNoteBook, which arranges its subwid-
gets using a notebook metaphor, TixPanedWindow, which arranges its subwidgets in non-
overlapping horizontal or vertical panes, and a family of “Scrolled Widgets”, which attach
scrollbars to their subwidgets.

2.1 TixNoteBook

When your need to put a lot of information into your interface, you may find out that your
window has to grow intolerably big in order to hold all the information. Having a window
that’s 10000 pixels wide and 5000 pixels high doesn’t seem to be the perfect solution. Of
course, you can “chop up” your big window into a set of smaller dialog boxes, but the user
will most likely find it impossible to manage 20 different dialog boxes on their desktop.

The TixNoteBook (fig 2.1) widget comes into rescue. It allows you to pack a large
interface into manageable “pages” using a notebook metaphor: it contains multiple pages
with anything you want on them, displays one at a time, and attaches a tab to each page
so the user can bring it forward with a single click on the tab.

2.1.1 Adding Pages to a TixNoteBook

The example program in figure 2.1 creates the TixNoteBook widget shown in figure 2.1.
In the first three lines, we create the notebook widget and two pages inside it. While we
create the pages, we also set the labels on the tabs associated with each page and use the
-underline option to indicate the keyboard accelerator for each page.

Each time we create a page in the notebook using the add method, a frame subwidget

23

24 CHAPTER 2. CONTAINER WIDGETS

=| notebook.tcl o ;gj
Hard Disk | Network |

Access Time: _
Write Throughput: _
Read Throughput: _
E Capacity: _

L e)

Figure 2.1: The TixNoteBook Widget

is created for us automatically. This frame subwidget has the same name as the page (the
first parameter passed to the add method). We can use the subwidget method to find out
the pathname of this frame subwidget and pack everything we want to display on the page
into this frame widget. Lines 4-10 of program 2.1 shows how to create the widgets inside
the “Hard Disk” page. Creating the widgets inside the “Network” page will be similar.

Program 2.1 Using The TixNoteBook Widget
tixNoteBook .n
.n add hd -label "Hard Disk" -underline O
.n add net -label "Network" -underline O

set frame [.n subwidget hd]

tixControl $frame.access -label "Access Time:"
tixControl $frame.write -label "Write Throughput:"
tixControl $frame.read -label "Read Througput:"

tixControl $frame.capacity —label "Capacity:"
pack $frame.access $frame.write $frame.read $frame.capacity \
-side top -fill x

2.1.2 Keyboard Accelerators

Note that in line 2-3 of program 2.1, we have indicated the keyboard accelerators for the two
pages using the —underline option. The value of this option is the position of the character
to be underlined in the string, where zero represents the first character. When the user
presses <A1t-N> or <Meta-N> the “Network” page will be activated; on the other hand, if
he presses <A1t-H> or <Meta-H> the “Hard Disk” page will be activated. The TixNoteBook
widget will automatically create the keyboard bindings for these accelerators for us, in a
way similar to what the menu widget does, so there is no need to set the keyboard bindings
ourself.

2.1. TIXNOTEBOOK 25

2.1.3 Delaying the Creation of New Pages

If your notebook contains many complicated pages, it may take quite a while to create all
widgets inside these pages and your program will probably freezes for a few seconds when it
pops up the notebook for the first time. To avoid embarrassing moments like this, we can
use the “delayed page creation” feature of the TixNoteBook widget.

When we create a page using the add method, we can specify the optional parameter
—-createcmd so that we only need to create the page when the user wants to see it. This is
illustrated in program 2.2:

Program 2.2 Delayed Page Creation
tixNoteBook .n
.n add hd -label "Hard Disk" -underline 0 —-createcmd CreateHd
.n add net -label "Network" -—underline 0 -createCmd CreateNet

proc CreateHd {frame} {

tixControl $frame.access -label "Access Time:"
tixControl $frame.write -label "Write Throughput:"
tixControl $frame.read -label "Read Througput:"

tixControl $frame.capacity —label "Capacity:"
pack $frame.access $frame.write $frame.read $frame.capacity \
-side top -fill x
}

proc CreateNet {frame} {

}

In line 2 of program 2.2, we use the —createcmd option to specify that the procedure
CreateHd should be called when the “Hard Disk” page needs to be created. CreateHd takes
one argument, the frame subwidget of the page. As we can see, program program 2.2 is not
very different than program 2.1, except now we can issue less commands during the set-up
of the NoteBook widget and the interface can be started up more quickly.

2.1.4 Changing Page Tabs and Deleting Pages

To change the information in the tabs of the pages, we can use the pageconfigure method.
For example, the following command:

.nb pageconfigure hd -label "Fixed Disk"

changes the label from “Hard Disk” to “Fixed Disk”. To delete a page, we can use the
delete method.

You should avoid using the pageconfigure and delete. Your users will just feel annoyed
if the interface changes all the time and notebook pages appear and disappear every now
and then.

26 CHAPTER 2. CONTAINER WIDGETS

— Vertical | = Horizonital - |
[[
_ |
_h
_h
]]]]
(a) Vertical Panes (b) Horizontal Panes

Figure 2.2: The TixPane Widget

2.2 PanedWindow

The TwPanedWindow widget arranges arranges its subwidgets in non-overlapping panes.
As we can see in figure 2.2, the PanedWindow widget puts a resize handle between the panes
for the user to manipulate the sizes of the panes interactively. The panes can be arranged
either vertically (figure 2.2(a)) or horizontally (2.2(b)).

Each individual pane may have upper and lower limits of its size. The user changes the
sizes of the panes by dragging the resize handle between two panes.

2.2.1 Adding Panes Inside a TixPanedWindow Widget

You can create a TixPanedWindow widget using the tixPanedWindow command. After
that, you can add panes into this widget using the add method (see program 2.3).

When you use the add method, there are several optional parameters which you can use
to control the size of each of the pane. The -min parameter controls the minimum size of
the pane and the -max parameter controls its maximum size. These two parameters controls
how much the user can expand or shrink a pane. If neither is specified, then the pane can
be expanded or shrunk without restrictions.

In addition, the -size parameter specifies the initial size of the pane. If it 1s not specified,
then the initial size of the pane will be its natural size.

In program 2.3, we set the initial size of panel to 100 pixels using the -size parameter.
We don’t set the -size parameter for pane2 so it will appear in its natural size. However,
we use the -max option for pane2 so that the user can never expand the size of pane2 to

2.2. PANEDWINDOW 27

— fhowish

Button1 | Buttonz |

Another Button

Figure 2.3: Output of Program 2.3

more than 300 pixels.

Program 2.3 Adding Panes into a TixPanedWindow Widget
tixPanedWindow .p
.p add panel -size 100
.p add pane2 -max 300

set pl [.p subwidget panell
button $pl.bl -text Buttonl
button $pl.b2 -text Button2
pack $pl.bl $pl.b2 -side left -expand yes

set p2 [.p subwidget pane2]
button $p2.b -text "Another Button"
pack $p2.b -side left -expand yes -fill both

pack .p -expand yes -fill both

2.2.2 Putting Widgets Inside the Panes

Each pane we have created using the add method is essentially a frame widget. After we
have created the panes, we can put widgets inside them. As shown inside program 2.3, we
can use the subwidget method to find out the name of the pane subwidgets. Then we can
just create new widgets as their children and pack these new widgets inside the panes. The
output of program 2.3 is shown in figure 2.3

28 CHAPTER 2. CONTAINER WIDGETS

2.2.3 Setting the Order of the Panes

Usually, when you create a new pane, it is always added to the bottom or right of the list
of panes. If you want to control the order in which the panes appear inside the TixPaned-
Window widget, you can use the two optional parameters, ~before and -after, for the add
method. For example, the call:

.p add pane2 -after panel
will place the new pane immediately after panel. The call:
.p add pane2 -before panel

will place the new pane immediately in front of panel.

2.2.4 Changing the Sizes of the Panes

If you want to change the sizes of the existing panes or change their maximum/minimum
size constraints, you can use the paneconfigure method. For example, the following code
changes the size of pane2 to 100 pixels and adjusts its minimum size constraint to no less
than 10 pixels:

.p paneconfigure pane2 -size 100 -min 10

Notice that after you call the paneconfigure method, the PanedWindow may jitter and
that may annoy the user. Therefore, use this method only when it is necessary.

2.3 The Family of Scrolled Widgets

With plain Tcl/Tk, the widgets do not automatically come with scrollbars. If you want to
use scrollbars with the text, canvas or listbox widgets, you will need to create scrollbars
separately and attach them to the widgets. This can be a lot of hassle because you would
almost always need scrollbars for these widgets. Sometimes you will wonder why you need
to write the same boring code again and again just to get the scrollbars to working.

The Tix scrolled widgets are here to make your life easier. With a single command such
as tixScrolledListBox or tixScrolledText, you can create a listbox or text widget that
comes automatically with scrollbars attached.

Another advantage of the Tix scrolled widgets is that you can specify their scrolling
policy so that the scrollbars appear only when they are needed. This feature is especially
useful if you are displaying a lot of widgets and running out of screen real estate.

2.3. THE FAMILY OF SCROLLED WIDGETS 29

— tixwish -] — i
This is item O — IXWES. =
This is item 1 This is item O &
This is item 2 This is item 1
This is item 3 This is item 2
This is itemn This is item 3
S This is itermn 5 4 d[This is item 4 |
This iz item & 7
(a) Scrollbars not displayed (b) Scrollbars displayed only when

needed

Figure 2.4: Scrolled ListBox with Automatic Scrollbars

2.3.1 The Scrolled Listbox Widget

You can create a scrolled listbox widget using the tixScrolledListBox command. Notice
that the widget created by the tixScrolledListBox command is not itself a listbox widget.
Rather, it is a frame widget which contains two scrollbar subwidgets: one is called hsb (the
horizontal scrollbar) and the other is called vsb (the vertical scrollbar). Similarly, the listbox
being scrolled is also a subwidget which is appropriately called listbox. Therefore, if we
need to put things into the listbox (as we always do!), we can use the subwidget method.
As shown in program 2.4, we first find the pathname of the 1istbox subwidget by calling
“.sl subwidget listbox”. Then, we insert some items into the listbox subwidget.

Program 2.4 Scrolled Listbox Widget
tixScrolledListBox .sl -scrollbar auto
set listbox [.sl subwidget listbox]

for {set x 0} {$x < 6} {incr x} {
$listbox insert end "This is item $x"

}

pack .sl -side left -expand yes -fill both

Also, as seen in the first line of program 2.4, we use the -scrollbar option to control
the scrolling policy of the TixScrolledListBox widget. Usually, we’ll set it to “auto”: the
scrollbars are displayed only if they are needed. Other possible values are “both”: the two

[T

scrollbars are always displayed; “x”: the horizontal scrollbar is always displayed, while the

vertical scrollbar is always hidden; “y”: the opposite of “x”; “none”: the two scrollbars are
always hidden. The result of program 2.4 is shown in figure 2.4.

30 CHAPTER 2. CONTAINER WIDGETS

2.3.2 Other Scrolled Widgets

The TixScrolledText widget is very similar to the TixScrolledListBox widget, except it
scrolls a text subwidget, which is called text. One problem with the TixScrolled Text widget,
though, is its —scrollbar option doesn’t work in the auto mode. This is due to a bug in
Tk which doesn’t report the width of the text subwidget correctly. Until this bug is fixed
in TK, the auto mode will behave the same way as the both mode for the TixScrolled Text
widget.

Another scrolled-widget is TixScrolledWindow. Sometimes you have a large number
of widgets that can’t possibly be shown in the screen all at once and your application doesn’t
allow you to divide the widgets into several pages of a TixNoteBook. In this case you can
use TixScrolledWindow. It contains a frame subwidget called window. You can just create
as many widgets as you need as children of the window subwidget. An example i1s shown in
program 2.5, which uses the TixScrolledWindow widget to implement a “cheap” spreadsheet
application. The boxes of the spreadsheet are just entry widgets and they are packed inside
the window subwidget. The user will be able to scroll to different parts of the spreadsheet
if it is too large to fit in one screen.

Program 2.5 Cheap Spreadsheet Application with TixScrolledWindow
tixScrolledWindow .sw -scrollbar auto
set £ [.sw subwidget window]

for {set x 0} {$x < 10} {incr x} {
frame $f.f$x
pack $f.f$x -side top -expand yes -fill both
for {set y 0} {$y < 10} {incr y} {
entry $f.f$x.e$y -width 10
pack $f.f$x.e$y -side left -fill x

pack .sw -side left -expand yes -fill both

There are two more scrolled-widgets in the Tix library: TixSecrolledTList scrolls a
TixTList widget and TixScrolledHList scrolls a TixHList widget. The subwidgets that
they scroll are called t1ist and hlist, respectively. The use of the TList and HList widgets
will be described in the next chapters.

Chapter 3

Tabular Listbox and Display
Items

3.1 tixTList — The Tix Tabular Listbox Widget

TiwxTLust is the Tabular Listbox Widget. It displays a list of items in a tabular format. For
example the TixTList widget in figure 3.1 displays files in a directory in rows and columns.

TixTList does all what the standard Tk listbox widget can do, i.e, it displays a list
of items. However, TixTList is superior to the listbox widget is many respects. First,
TixTList allows you to display the items in a two dimensional format. This way, you can
display more items at a time. Usually, the user can locate the desired items much faster in
a two dimensional list than the one dimensional list displayed by the Tk listbox widget.

In addition, while the Tk listbox widget can only display text items, the TixTList widget
can display a multitude of types of items: text, images and widgets. Also, while you can use
only one font and one color in a listbox widget, you can use many different fonts and colors

— Fites 2=
proc £1 tmp
root 7 usr
shin 7 wvar
shlih E READI
temp_dosemu E vmlinu
iy = |

Figure 3.1: Files Displayed in a TixTList Widget in a Tabular Format

31

32 CHAPTER 3. TABULAR LISTBOX AND DISPLAY ITEMS

— Fmplovees - | o]

Alan Adams Chug
Zoe Anderson Alex |
Douglas Eloom Joe i
Joe Baraki Mary
Andreas Crawford

Joe Geoffrey

= e =

Figure 3.2: Employee Names Displayed in a TixTList Widget

in a TixTList widget. In figure 3.1, we use graphical images inside a tixTList widget to
represent file objects. In figure 3.2, we display the names of all employees of a hypothetical
company. Notice the use of a bold font to highlight all employees whose first name is Joe.

3.2 Display Items

Before we rush to discuss how to create the items inside a TixTList widget, let’s first spend
some time on a very important topic about the Tix library: the repationship between the
display items and their host widgets.

We can better define the terms by taking a quick preview of the TixHList widget, which
will be covered in details in the next chapter. Let’s compare the items displayed on the two
widgets in figure 3.3. If we take a close look at the item that shows the usr directory in the
TixTList widget on the left versus the TixHList widget on the right, we can see that this
item appears exactly the same on both widgets.

If fact, all the items in these two widgets are of the same type: they all display an
image next to a textual name. The only difference between these two widgets 1s how these
items are arranged. The TixTList widget arranges the items in rows and columns, while
the TixHList widget arranges the items in a hierachical format.

With this observation in mind, we can see a separation of tasks berween the widgets
and the items they display. We call the TixHList and TixTList widgets in figure 3.3 host
widgets: their task is to arrange the items according to their particular rules. However, they
don’t really care what these items display; they just treat the items as rectangle boxes. In
contrast, these items, which are called display items in Tix terminology, controls the visual
information they display, such as the images, text strings, colors, fonts, etc. However, they
don’t really care where on the host widget they will appear.

3.2. DISPLAY ITEMS 33

Files

a

£ usr = .
: J| \ | dirtreel.icl

proc £ tmp/

root £ usr
shin 7 war
shlib E1 BEALI

temp_dosemu B vmlinu

- | DDDDD

= |

|

:

Figure 3.3: The Same Type of Items Displayed in a TixTList (left) and a TixHList(right)

3.2.1 Advantages of Display Items

It is easy to see the advantages of seperating the display items from their host widgets.
First, the display items are easy to learn. Since they are the same across different types of
widgets. Once you learn about a type of display items, you will know how to use them in
all Tix widgets that support display items (currently these include TixHList, TixTList and
the spreadsheet widget TixGrid, but the number is growing). In contrast, if you want to
create a text item for the Tk widgets, you will find out that the listbox, text, canvas and
entry widget each have a different method of creating and manipulating text items, and it
is quite annoying to learn each of them individually.

Second, the hosts widgets that use display items are extensible. Because of the separation
of task, the host widgets are not involved in the implementation details of the display items.
Therefore, if you add a new type of display items, such as a animation type that displays
live video, the host widgets will gladly take them in and display them. You don’t need to
modify the existing host widgets at all. In contrast, if you want to display graphical images
in the existing Tk listbox widgets, you’d better set aside 100 hours to rewrite it completely!

Third, display items are good for writers of host widgets. Because now they just need
to implement the arrangement policy of the host widgets. They don’t need to worry about
drawing at all because it is all handled by the display items. This is a significant saving in
code because a widget that does not use display items has to spend 30% of its C code to do
the drawing.

3.2.2 Display Items and Display Styles

The appearance of a display item is controlled by a set of attributes. For example, the text
attribute controls the text string displayed on the item and the font attribute specifies what
font should be used.

Usually, each of the attributes falls into one of two categroies: “individual” or “collective” .
For example, each of the items inside a TixTList widget may display a different text string;
therefore we call the text string an individual attribute. However, in most cases, the items

34 CHAPTER 3. TABULAR LISTBOX AND DISPLAY ITEMS

T item ¢ = style2
item a text=Joe Baraki font=bold

text=Douglas Bloom style=style 2 foreground=blue
style=style 1
] |
tem b] —| Employees | .| _|I|
:;‘l‘:s't‘;‘l‘e’*ldams — Alan Adams Chue
Zoe Anderson Alex |
[Douglas Bloom Joe d
- Joe Baraki hary
- sylel Andreas Crawford
font=normal Joe Geoffrey

foreground=black

13 = |

Figure 3.4: Relationship Between Display Items and Display Styles

share the same color, font and spacing and we call these collective attributes.

One question concerns where we keep the collective attribute for the display items.
Certainly, we can keep a font attribute for each item, but this is not really an efficient
solution. In fact, if all the items have the same font, we would be keeping a duplicated
copy of the same font for each of the items we create. Since a host widget may have many
thousands of items, keeping thousands of dupilcated copys of the same font, or any other
collective attributes, would be very wasteful.

To advoid the unnecessary duplication of resources, Tix stores the collective attributes
in special objects called display styles. The relationship between display items and their
styles is depicted in figure 3.4. Each item holds its own copy of the individual attributes,
such as text. However, the collective attributes are stored in the style objects. Each item
has a special style attribute that tells it which style it should use. In figure 3.4, since items
a and b are assigned the same style, therefore, they share the same font and color. Item ¢
is assigned a different style, thus, it uses a different font than a and b.

3.3 Creating Display Items in the TixTList Widget

3.3.1 Creating Display Items

Now 1it’s time to put our knowledge about host widgets, display items and display styles
into practice. The following example code creates two items in a TixTList widget using the
insert method:

tixTList .t
pack .t

3.3. CREATING DISPLAY ITEMS IN THE TIXTLIST WIDGET 35

.t insert end -itemtype text -text "First Item" -underline O
.t insert end -itemtype text -text "Second Item'" -underline O

set picture [image create bitmap -file picture.xbm]
.t insert end -itemtype image -image $picture

As we can see, the insert method of TixTList is very similar to the insert method of
the standard Tk listbox widget: 1t inserts a new item into the TixTList widget. The first
argument 1t takes is the location of the new item. For example 0 indicates the first location
in the list, 1 indicates the second location, and so on. Also the special keyword end indicates
the end of the list.

Then, we can use the —itemtype switch to specify the type of display item we want to
create. There are currently four types of items to choose from: text, image, imagetext and
window. In the above example, we create two items of the type text and one item of the
type image. The subsequent arguments to the insert method set the configuration options
of the individual attributes of the new item. The available options for these items are listed

in figures 3.7 through 3.10.

3.3.2 Setting the Styles of the Display Items

Note that in the above example, if we want to control the foreground color of the text items,
we cannot issue commands such as:

.t insert end -itemtype text -text "First Item" -foreground black

because -foreground is not an individual attribute of the text item. Instead, it is a collective
attribute and must be accessed using a display style object. To do that we can use the
command tixItemStyle to create display styles, as shown in the following example:

set stylel [tixDisplayStyle text -font 8x13]
set style2 [tixDisplayStyle text -font 8x13bold]

tixTList .t; pack .t

.t insert end -itemtype text -text "First Item" -underline 0 \
-style $stylel

.t insert end -itemtype text -text "Second Item" -underline 0 \
-style $style2

.t insert end -itemtype text -text "Third Item" -underline 0 \
-style $stylel

The first argument of tixDisplayStyle specify the type of style we want to create. Each
type of display item needs its own type of display styles. Therefore, for example, we cannot
create a style of type text and assign it to an item of type image. The subsequent arguments
to tixDisplayStyle set the configuration options of the collective attributes defined by this

36 CHAPTER 3. TABULAR LISTBOX AND DISPLAY ITEMS

— iwish == — 1iwish ==
Eirst Item First Iten
decond Iten Second Item

dThird Item 4 H|Third Iten 7
(a) Three text items in a TixTList (b) The text items with fonts

switched

Figure 3.5: Two Display Styles With Different Fonts

style. A complete list of the configuration options of each type of the display style is in figures
3.11 through 3.13.

The tixDisplayStyle command returns the names of the newly created styles to us and
we use the variables stylel and style2 to store these names. We can then assign the styles
to the display items by using the names of the styles. As shown in figure 3.5(a), by assing
these two styles to the —-style option of the display items, we assigned a medium-weight
font to the first and third item and a bold font to the second item.

The name of the style returned by tixDisplayStyle is also the name of a command
which we can use to control the style. For example, we can use the following commands to
switch the fonts in the two styles we created in the above example:

$stylel configure -font 8x13bold
$style2 configure -font 8x13

After the execution of the above command, the font in the second item in the TixTList
widget becomes medium-weight and the font in the first and third items becomes bold, as

shown in figure 3.5(b).

3.3.3 Configuring and Deleting the Items

You can configure the individual attributes of the items using the entryconfigure method.
There is also the entrycget method for querying the attributes of the items. To delete the
items, you can use the delete method. In the following example, we use these two methods
to change the first and third items to display the text strings One and Two and change the
third item to use the style $style2. Then we delete the second item using the delete
command.

.t entryconfigure O -text One
.t entryconfigure 2 -text Two
.t delete 1

3.3. CREATING DISPLAY ITEMS IN THE TIXTLIST WIDGET 37

i
Q] > Y
(a) Vertical Orientation (b) Horizontal Orientation

Figure 3.6: The -orientation option of the TixSelect Widget

3.3.4 Choosing the Orientation and Number of Rows or Columns

There are three options that controls the layout of the items in the TixTList widget. The
-orientation option can be set to either vertical or horizontal. When -orientation is
set to vertical, the items are laid out vertically from top down and wrapped to the next
column when the bottom is reached (see figure 3.6(a)). The opposite layout policy is chosen
if —orientation is set to horizontal (see figure 3.6(b)).

When the -orientation option is set to vertical, normally the number of columns
displayed depends on the number of items in the TixTList widget: the more items there
are, the more columns will there be. However, we can use the —columns option to control
the number of columns: the items will be wrapped in a way so that the number of columns
produced will be exactly as dicated by the —columns option.

One use of the ~columns option is to specify the same layout policy as that of the stan-
dard Tk listbox widget. We can do this by setting —orientation to vertical and -columns
to 1. This way we can get a replacement listbox widget that can display multiple fonts and
colors and graphics!

The counterpart of the —columns option is the —rows option, which is used for the same
purpose when the —orientation option is set to horizontal.

3.3.5 Event Handling

You can handle the events in a TList widget using the -browsecmd and -command options.
The meanings of these two options are silimar to their meanings in other Tix widgets such
as the ComboBox. Usually, the command specified by -browsecmd is called when the user
clicks or drags the mouse over the items or presses the arrow keys. The command specified by
—-command is called when the user double-clicks or presses the Return key. These commands
are called with one extra argument — the index of the currently “active” item, which is
usually the item under the mouse cursor.

38 CHAPTER 3. TABULAR LISTBOX AND DISPLAY ITEMS

3.3.6 Selection

The -selectmode option controls how many items the user can select at one time. In the
single and browse mode, the user can select only one item at a time. In the multiple
and extended mode, the user can select multiple items; the extended mode allows disjoint
selections while the multiple mode does not.

Normally, the user selects the items using the mouse or the keyboard. You can find
out which 1tems the user has selected with the info selection method, which returns a
list of the currently selected items. You can also set the selection using the selection
set method. For example, the command .tlist selection set 3 selects the item whose
index is 3. The command .tlist selection set 2 10 selects all the items at index 2
through 10. The method selection clear empties the selection.

3.3. CREATING DISPLAY ITEMS IN THE TIXTLIST WIDGET

Option Meaning

-bitmap Specifies the bitmap to display in the item.

-image Specifies the image to display in the item. When both the -bitmap
and -image options are specified, only the image will be displayed.

-style Specifies the display style to use for this item.

-showimage A Boolean value that specifies whether the image/bitmap should
be displayed.

-showtext A Boolean value that specifies whether the text string should be
displayed.

-text Specifies the text string to display in the item.

-underline Specifies the integer index of a character to underline in the text
string in the item. 0 corresponds to the first character of the text
displayed in the widget, 1 to the next character, and so on.

Figure 3.7: Individual Attributes for the imagetext Display Item

Option Meaning

-style Specifies the display style to use for this item.

-text Specifies the text string to display in the item.

-underline Specifies the integer index of a character to underline in the text
string in the item. 0 corresponds to the first character of the text
displayed in the widget, 1 to the next character, and so on.

Figure 3.8: Individual Attributes for the text Display Item

Option Meaning

-style Specifies the display style to use for this item.

-image Specifies the image to display in the item.

Figure 3.9: Individual Attributes for the image Display Item

Option Meaning

-style Specifies the display style to use for this item.

-window Specifies the widget to display in the item.

Figure 3.10: Individual Attributes for the window Display Item

—activebackground -activeforeground —anchor

-background —-disabledbackground —-disabledforeground

-foreground -font -justify

-padx -pady -selectbackground

-selectforeground -wraplength

Figure 3.11: Collective Attributes for the imagetext and text Display Items

—anchor

| -padx | -pady |

Figure 3.12: Collective Attributes for the window Display Item

39

40 CHAPTER 3. TABULAR LISTBOX AND DISPLAY ITEMS

—activebackground -activeforeground —anchor

-background —-disabledbackground —-disabledforeground
-foreground -padx -pady
-selectbackground -selectforeground

Figure 3.13: Collective Attributes for the image Display Item

Chapter 4

Hierarchical Listbox

4.1 TixHList — The Tix Hierarchical Listbox Widget

TwHList 18 the Tix Hierarchical Listbox Widget. You can use it to display any data that
have a hierarchical structure. For example, the HList widget in figure 4.1(a) displays a Unix
file system directory tree; the HList widget in figure 4.1(b) displays the corporate hierarchy
of a hypothetical company. As shown in these two figures, the entries inside the TixHList
widget are indented can be optionally connected by branch lines according to their positions
in the hierarchy.

4.1.1 Creating a Hierarchical List

A TixHList widget can be created by the command tixHList. However, most likely, you
would want to create a TixHList with scrollbars attached. Therefore, usually you will use the
tixScrolledHList command to create ascrolled hierarchical listbox (line 1 in program 4.1).
The tixScrolledHList command is very similar to the TixScrolledListBox command we
saw 1n section 2.3.1. It creates a TixHList subwidget of the name hlist and attaches two
scrollbars to it.

As shown in the first five lines in program 4.1, we create a scrolled TixHList widget,
using the —options switch (see section 1.3.5) to set several options for the hlist subwidget
(we’ll talk about these options shortly). Then, we can access the HList subwidget widget
using the subwidget hlist method (line 7 in program 4.1).

4.1.2 Creating Entries in a HList Widget

Each entry in an HList widget has a unique name, called its entry-path, which determines
each entry’s position in the HList widget. The entry-paths of the HList entries are very
similar to the pathnames of Unix files. Each entry-path is a list of string names separated
by a separator character. By default, the separator character is the period character (.),
but it can be configured using the —separator option of the HList widget.

41

42 CHAPTER 4. HIERARCHICAL LISTBOX

]]
— dirtreet.icl B John Doe Diresin
; 2| Jell Waanan hdBrager
— Dowglas Bloem ek
J Chris Geoffrey Clerk
Chiek Ml ean Caana
John Lee A mneger
flex Ealliman Chaik
Alan Audams Clerk
Palir Eigpndien (S LR =]
4 e | Gance |
f | - — —
(a) Directory Tree Display (b) A Corporate Hierarchy

Figure 4.1: Examples of the TixHList Widget

Program 4.1 Creating Entries in a HList Widget
tixScrolledHList .sh -options {
hlist.itemType text
hlist.drawBranch false
hlist.indent 8

b
pack .sh -expand yes -fill both

set hlist [.sh subwidget hlist]

$hlist add foo -text "foo"
$hlist add foo.bar -text "foo’s 1st son"
$hlist add foo.bor -text "foo’s 2nd son"

$hlist add foo.bar.bao -text "foo’s 1st son’s 1st son"
$hlist add foo.bar.kao -text "foo’s 1st son’s 2nd son"
$hlist add dor -text '"dor, who has no son"

foo's 1st son's Znd son
fon’s 2nd son

rAnr whn has nn snn
1,]

_
foo's 15t s0n’s 1st son
/

Figure 4.2: Output of Program 4.1

4.1. TIXHLIST — THE TIX HIERARCHICAL LISTBOX WIDGET 43

In program 4.2, we add several new entries foo, foo.bar, foo.bor, foo.bar.bao, .. etc,
into the HList widget using the add method. The relationship between the entries is signified
by their names, in a way similar to how Unix denotes directories and subdirectories. For
example, foo is the parent of foo.bar and foo.bor; foo.bar is the parent of foo.bar.bao,
and so on. As far as the terminology goes, we also say that foo.bar a child of foo; foo is
an ancestor of foo.bar.bao and foo.bar.bao is a descendant of foo.

The output of program 4.1 is shown in figure 4.2. As we can see, the entries are displayed
under their parents with the amount of indentation control by the —indent option of the
HList widget: foo.bar.bao and foo.bar.kao are display under foo.bar, which is in turn
displayed under foo.

Entries with no parents, for example, foo and dor in program 4.1, are called top-level
entries. Top-level entries are usually entries with no immediate superiors in a hierarchical.
For example, the owner of a company, the principle of a school or the root directory of a
Unix file system. Toplevel entries are displayed with no indentation.

As evident from program 4.1, all entries who entry-path does not contain a separator
character are top-level entries. The only exception is the separator character itself is also a
toplevel entry. This makes it easy to display Unix file and directory names inside the HList
widget, as shown in program 4.2.

Program 4.2 Displaying Directories in a HList Widget

set folder [tix getimage folder]
tixScrolledHList .sh -options {

hlist.separator /
hlist.itemType imagetext
hlist.drawBranch true
hlist.indent 14

hlist.wideSelection false
}
pack .sh -expand yes -fill both

set hlist [.sh subwidget hlist]

foreach directory {/ /usr /usr/bin /usr/local /etc /etc/rc.d} {
$hlist add $directory -image $folder —text $directory
}

Each entry is associated with a display item (see section 3.2 about display items). We can
use the —itemtype option of the HList widget to specify the default type of display item to
be created by the the add method, as shown in program 4.1 and 4.2. Alternatively, we can
also specify the type of display item using the -itemtype option for the add method.

4.1.3 Controlling the Layout of the Entries

There are two options to control the layout of the entries: the —showbranch option specifies
whether branch lines should be drawn between parent entries and their children. The
-indent option controls the amount of relative indentation between parent and child entries.

44 CHAPTER 4. HIERARCHICAL LISTBOX

fetc
[LEI fetcire.d]

Figure 4.3: Output of Program 4.2

Notice the ~drawbranch option is turned on in figure 4.3 but turned off in figure 4.2. Usually,
you need to set a bigger indentation when the branches are shown — we used an indentation
of 14 pixels in 4.3 compared to 8 pixels in 4.2.

4.1.4 Handling the Selection and User Event

The handling of the selection and user events for the HList widget i1s very similar to the
TList widget (see section 3.3.5), except that for the HList widget all the operations are
based on entry-paths, not list indices. The methods info selection, selection set and
selection clear can be used to query, set or clear the selection; the option —selectmode
controls how many entries can be selected at a time; the options -browsecmd and -command
can be used to specify a command to be called to handle user events.

There 1s one more option worth mentioning: the -wideselection option. When set to
true, the selection highlight will be drawn across the whole HList widget (see figure 4.2).
When set to false, selection highlight will be drawn as wide as the selected entry (see figure
4.3). Normally, you would set -wideselection to false when you use imagetext items
inside (as we did in program 4.2).

4.2 Creating Collapsible Tree Structures with TixTree

The TixTree widget is based on the TixScrolledHList widget; you can use it to create a
collapsible hierarchical structure so that the user can conveniently navigate through a large
number of list entries. As shown in figure 4.4, the TixTree puts the little “+” and “~” icons
next to the branches of an HList entry that has descendants. These two icons are knows as
the open and close icons, respectively. When the user presses the open icon next to an entry,
its immediate children of an entry will be displayed. Conversely, when the user presses the
close icon, the entry’s children will become hidden.

Program 4.3 shows how to create a collapsible tree. We first create a TixTree widget.
Then we add the entries in your hierarchical structure into its hlist subwidget using the
add method of this subwidget. When we are finished with adding the entries, we just call
the autosetmode method of the TixTree widget, which will automatically adds the open
and close icons next to the entries who have children.

4.2. CREATING COLLAPSIBLE TREE STRUCTURES WITH TIXTREE

45

Program 4.3 Creating a Collapsible Hierarchy

set folder [tix getimage folder]

tixTree .tree -command Command -options {
hlist.separator /
hlist.itemType 1imagetext
hlist.drawBranch true
hlist.indent 18

b

pack .tree -expand yes -fill both

set hlist [.tree subwidget hlist]

foreach directory {/ /usr /usr/bin /usr/local /etc /etc/rc.d} {
$hlist add $directory -image $folder —text $directory

}

.tree autosetmode

proc Command {entry} {
puts "you have selected $entry"

}

Figure 4.4: Output of Program 4.3

46 CHAPTER 4. HIERARCHICAL LISTBOX

Note that in program 4.3 we use the —command option of the TixTree widget, not the
—-command option of its hlist subwidget. This is because the TixTree actually used the
—-command option of its hlist subwidget to process some low-level events. In general, if both
a mega-widget and 1ts subwidget have the options of the same name, you would always use
the option that belongs to the mega-widget.

Chapter 5

Selecting Files and Directories

One task that an application has to perform frequently is to ask the user to select files or
directories. To select files, you can use the Tix File Selection Widgets: TixFileSelectDialog
and TixExFileSelectDialog. To select directories, you can use the Tix Directory Selection
Widgets: TixDirList and TixDirTree.

5.1 File Selection Dialog Widgets

There are two file dialog widgets inside Tix: the TixFileSelectDialog (figure 5.1) is similar
to the FileSelectionDialog widget in Motif; TixExFileSelectDialog (figure 5.2) looks like its
conunterpart in MS Windows. Both widgets let the user navigate through the file system
directories and select a file.

One advanced feature of both types of file selection boxes is they use ComboBoxes to
store the files, directories and patterns the user has selected in the past. If the user wants
to select the same files again, he can simply open the ComboBoxes and click on his past
inputs. This saves a lot of keystrokes and is especially useful when the user needs to switch
among several files or directories.

5.1.1 Using the TixFileSelectDialog Widget

An example of using the TixFileSelectDialog widget is in figure 5.1. At line 1, we create a
TixFileSelectDialog widget and set the title of the dialog to “Select A File” using the -title
option. We also use the ~command option to specify that the procedure selectCmd should
be called when the user has selected a file. selectCmd will be called with one parameter, the
filename selected by the user. When the TixFileSelectDialog widget is created, it is initially
not shown on the screen. Therefore, at line 3, we call its popup widget command to place
the widget on the screen.

47

48 CHAPTER 5. SELECTING FILES AND DIRECTORIES

Program 5.1 Using the TixFileSelectDialog

tixFileSelectDialog .file -title "Select A File" -command selectCmd
.file subwidget fsbox config -pattern "*.txt'" -directory /usr/info
.file popup

proc selectCmd {filename} {
puts "You have selected $filename"

}

TixFileSelectBox
TixFileSelectDidog = +
TixStdButtonBox

Figure 5.1: The Composition of a TixFileSelectDialog Widget

5.1. FILE SELECTION DIALOG WIDGETS 49
= Select A File
Eiles: i Directories: oK
- *| | |momefioi 3 -
HList.n = | B 7 Lancel |
JNDEX £ home .
ab:m J = ioi: o %ng;f Hidden
hes.tcl £7 Gnu
hes.tcl~ | Man
clienticl =1 hin
clienttcl~ £ course
copy.n 1 dew
' £ httpd
A £ ioi
dead.letter & b
rerm tel / = Al
List Files of Type:
3 |Allfiles ﬂ |

Figure 5.2: The ExFileSelectDialog Widget

5.1.2 The Subwidget in the TixFileSelectDialog

We may also want to set other options for the file dialog such as its file filter and working
directory. To do this, we must know the composition of the TixFileSelectDialog widget.
As shown in figure 5.1, the TixFileSelectDialog contains a subwidget fsbox of the type
TixFileSelectBox and a subwidget bbox of the type TixStdButtonBox.

The fsbox subwidget supports the —pattern and -directory options. At line 2 of
figure 5.1, we use the ~directory option to tell the £sbox subwidget to display files in the
directory /usr/info; we also use the —pattern option to specify we only want the filenames
that has the txt extension.

The fsbox subwidget also supports the —selection option, which stores the filename
currently selected by the user. We can query this value by the cget widget command of the
fsbox subwidget.

Remember that the -pattern, ~directory and -selection options do not belong to
the TixFileSelectDialog widget. A common mistake that people make is to try to configure
the non-existent -pattern option of the TixFileSelectDialog, which causes much despair,
long error messages and great loss of self-confidence. Always remember:, when you want to
configure an option, find out whether it belongs to the widget or its subwidgets.

5.1.3 The TixExFileSelectDialog Widget

The TixExFileSelectDialog widget is very similar to the TixFileSelectDialog widget. It
supports all the options and widget commands of the latter, so essentially we can just
take the program 5.1 and replace the command tixFileSelectDialog in the first line to

50 CHAPTER 5. SELECTING FILES AND DIRECTORIES

tixExFileSelectDialog.

The composition of the TixExFileSelectDialog widget is a bit different: it contains one
contains one subwidget, which 1s also called fsbox, of the type TixExFileSelectBox widget
(figure 5.2). Again this fsbox widgets supports all widget options and commands of the
fsbox subwidget in TixFileSelectDialog, so the line 2 of program 5.1 can work for TixEx-
FileSelectDialog widgets without any change.

5.1.4 Specifying File Types for TixExFileSelectDialog

The TixExFileSelectBox widget has a ComboBox subwidget marked as “Select Files of
Type:” (see figure 5.2). This widget contains some pre-set types of files for the user to
choose from. For example, a word processor program can include choices such as “Microsoft
Word Documents” and “WordPerfect Documents” .

The TixExFileSelectBox widget has a ~filetypes option for this purpose. As shown in
line 3 through 7 in program 5.2, the value for the ~-filetypes option is a list. Each item in
the list should contain two parts. The first part is a list of file patterns and the second part
1s the textual name for this type of files.

5.1.5 The tix filedialog Command

TixExFileSelectDialog and TixFileSelectDialog are very similar to each other. So which one
should we use? That is just a matter of taste. However, since we know that programmers
usually have bad taste, clever programmers would rather step aside and let the users exercise
their own taste. To do this, we can use the tix filedialog command.

For any programs based on Tix, the user can choose his preferred type of file dialog by set-
ting the X resource FileDialogto either tixFileSelectDialogor tixExFileSelectDialog.
This can usually be done by inserting a line similar to the followinginto the user’s .Xdefaults

file:
*myapp*FileDialog: tixExFileSelectDialog

When we call the command tix filedialog, it will return a file dialog widget of the user’s
preferred type.

The advantage of using tix filedialog is it makes coding flexible. If the management
suddenly mandates that we dump the Motif look-and-feel in favor of the MS Windows look-
and-feel, we don’t need to dig up every line of tixFileSelectDialog calls and replace it with
tixExFileSelectDialog. Also, tix filedialog creates only one copy of the file dialog,
which can be shared by different parts of the program. Therefore, we can avoid creating a
separate file dialog widget for each of the “Open”, “Save” and “Save As” commands in our
application. This way, we can save resource since a file dialog is a large widget and it takes
up quite a bit of space.

The use of the tix filedialog command is shown in program 5.2. This program is
very similar to what we saw in program 5.1, except now we aren’t really sure which type
of file dialog the user have chosen. Therefore, if we want to do something allowed for only

5.2. SELECTING DIRECTORIES WITH THE TIXDIRTREE AND TIXDIRLIST WIDGETS51

Program 5.2 Using the tix dialog command

set dialog [tix filedialog]
$dialog -title "Select A File" -command selectCmd
$dialog subwidget fsbox config -pattern "#.txt" -directory /usr/info

if {[winfo class $dialog] == "TixExFileSelectDialog"} {
$dialog subwidget fsbox config -filetypes {
{{*} {* —-— All files}}
{{*.txt?} {*.txt —— Text files}}
{{*.c} {#.c -- C source filesl}}
}
}

$dialog popup

proc selectCmd {filename} {
puts "You have selected $filename"

}

one type of file dialogs, we have to be careful. At line 4 of program 5.2, we use the winfo
command to see whether the type of the file dialog 1s TixExFileSelectDialog. If so, we set
the value for the -filetypes option of its £sbox subwidget.

5.2 Selecting Directories with the TixDirTree and TixDirList
Widgets

There are two Tix widgets for selecting a directory: TixDirList (figure 5.3(a)) and TixDirTree
(figure 5.3(b)). Both of them display the directories in a hierarchical format. The display
in the TixDirList widget is more compact: it shows only the parent- and child-directories
of a particular directory. The TixDirTree widget, on the other hand, can display the whole
tree structure of the file system.

The programming interface of these two widgets are the same and you can choose the
which one to use depending on your application. As shown in the following example, you
can use the -directory option of the TixDirList widget to specify a directory to display.
In the example, we set -directory to be /home/ioi/dev. As a result, the TixDirList
widget displays all the subdirectories and all the ancestor directories of /home/ioi/dev.
You can use the —command and -browsecmd options to handle the user events: a double
click or Return key-stroke will trigger the —command option and a single click or space bar
key stroke will trigger the —browsecmd option. Normally, you would handle both type of
events in the same manner, as we have done in program 5.3

52 CHAPTER 5. SELECTING FILES AND DIRECTORIES

Program 5.3 Using the TixDirList widget
tixDirList .d -value /home/ioi/dev \
—command "selectDir" -browsecmd '"selectDir"

pack .d

proc selectDir {dir} {

puts "now you select $dir"

¥
— dirfist.tcf 2 =)
— howish J| . B
F 3 & home B
erioi
e v
B?r?” £ hesa
1 autoconf-2.4
L1 WY £ hlt—-1.9
Course £ et15
ﬁtetvd 7 expect-5.18
| iy 1] £1 gif 1!
o / - -

(a) DirTree

(b) DirList

Figure 5.3: The DirTree and DirList Widgets

Chapter 6

Tix Object Oriented
Programming

This chapter is intended for experienced programmers who want to create new Tix widgets.
If you just want use the Tix widgets in your applications, you can skip this chapter.

6.1 Introduction to Tix Object Oriented Programming

Tix comes with a simple object oriented programming (OOP) framework, the Tiz Intrinsics,
for writing mega-widgets. The Tix Intrinsics is not a general purpose OOP system and it
does not support some features found in general purpose OOP systems such as [incr Tcl].
However, the Tix Intrinsics is specially designed for writing mega-widgets. It provides a
simple and efficient interface for creating mega-widgets so that you can avoid the complexity
and overheads of the general purpose OOP extensions to Tcl.

The hard thing about programming with mega-widgets is to make sure that each instance
you create can handle its own activities. Events must be directed to the right widget,
procedures must act on data that is internal to that widget, and users should be able to
change the options associated with the widget. For instance, we’ll show an arrow widget
that needs to know what direction it’s pointing; this requires each instance of the widget to
have its own variable.

Furthermore, each widget should respond properly to changes requested by the applica-
tion programmer during the program’s run. The whole reason people use Tcl/Tk is because
they can alter things on the fly.

The advantage of an object-oriented programming system is that you can easily associate
a widget with its own data and procedures (methods). This chapter shows how to do that,
and how to configure data both at the time the widget 1s initialized and later during the
program.

53

54 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING

JJ|

12 2 € 3

— arrows

Figure 6.1: Arrow Buttons

6.1.1 Widget Classes and Widget Instances

All the mega-widget classes in Tix, such as TixComboBox and TixControl, are implemented
in the Tix Intrinsics framework. Also, you can write new widget classes with the Tix Intrin-
sics. In the next section, I’ll go through all the steps of creating a new widget class in Tix.
I’ll illustrate the idea using a new class “TixArrowButton” as an example. TixArrowButton
is essentially a button that can display an arrow in one of the for directions (see figure 6.1).

Once you have defined your classes, you can create widget instances of these classes. For
example, the following code will create four instances of your new TixArrowButton class:

tixArrowButton .up —-direction n
tixArrowButton .left -direction e
tixArrowButton .right -direction w
tixArrowButton .down -direction s

6.1.2 What is in a Widget Instance

Each widget instance is composed of three integral parts: variables; methods and component
widgets

Variables

Each widget instance is associated with a set of variables. In the example of an instance of
the TixArrowButton class, we may use a variable to store the direction to which the arrow
is pointing to. We may also use a variable to count how many times the user has pressed
the button.

Each variable can be public or private. Public variables may be accessed by the appli-
cation programmer (usually via configure or cget methods) and their names usually start
with a dash (=). They usually are used to represent some user-configurable options of the
widget instance. Private variables, on the other hand, cannot be accessed by the application
programmer. They are usually used to store information about the widget instance that are
of interests only to the widget writer.

All the variables of an instance are stored in a global array that has the same name as
the instance. For example, the variables of the instance .up are stored in the global array
.up:. The public variable —~direction, which records the direction to which the arrow is
pointing to, is stored in .up(-direction). The private variable count, which counts how

6.2. WIDGET CLASS DECLARATION 55

many times the user has pressed the button, is stored in .up(count). In comparison, the
same variables of the .down instance are stored in .down(-direction) and .down(count).

Methods

To carry out operations on the widget, you define a set of procedures called methods (to use
common object-oriented terminology). Each method can be declared as public or private.
Public methods can be called by the application programmer. For example, if the TixArrow-
Button class supports the public methods invoke and invert, the application programmer
can issue the commands to call these method for the widget instance .up.

.up invert
.up invoke

In contrast, Private methods are of interests only to widget writers and cannot be called by
application programmers.

Component Widgets

A Tix mega-widget is composed of one or more component widgets. The main part of a
mega-widget is called the root widget, which is usually a frame widget that encompasses all
other component widgets. The other component widgets are called subwidgets.

The root widget has the same name as the the mega-widget itself. In the above example,
we have a mega-widget called .up. It has a root widget which is a frame widget and is also
called .up. Inside .up we have a button subwidget called .up.button.

Similar to variables and methods, component widgets are also classified into public and
private component widgets. Only public widgets may be accessed by the application pro-
grammer, via the subwidget method (see section 1.3.1) of each widget instance.

6.2 Widget Class Declaration

The first step of writing a new widget class is to decide the base class from which the new
class. Usually, if the new class does not share any common features with other classes, it
should be derived from the TixPrimitive class. If it does share common features with other
classes, then it should be derived from the appropriate base class. For example, if the new
class support scrollbars, it should be derived from TixScrolledWidget; if it displays a label
next to its “main area”, then it should be derived from TixLabelWidget.

In the case of our new TixArrowButton class, it doesn’t really share any common features
with other classes, so we decide to use the base class TixPrimitive as its superclass.

6.2.1 Using the tixWidgetClass Command

We can use the tixWidgetClass command to declare a new class. The syntax is:

56 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING

tixWidgetClass classCommandName {
-switch value
-switch value

For example, the following is the declaration section of TixArrowButton:

Program 6.1 declaration of the TixArrowButton Class

tixWidgetClass tixArrowButton {
—classname TixArrowButton
-superclass tixPrimitive
-method {
flash invoke invert
¥
-flag {
-direction -state
¥
-configspec {
{-direction direction Direction e}
{-state state State normal}

¥
-alias {
{-dir -direction}
¥
-default {
{#Button.anchor c}
{*Button.padX 5}
¥

We’ll look at what each option means as I describe the command in the following sections.

The first argument for tixWidgetClass is the command name for the widget class
(tixArrowButton). Command names are used to create widgets of this class. For example,
the code

tixArrowButton .arrow

creates a widget instance .arrow of the class TixArrowButton. Also, the command name is
used as a prefix of all the methods of this class. For example, the Foo and Bar methods of the
class TixArrowButton will be written as tixArrowButton: :Foo and tixArrowButton: :Bar.

The class name of the class (TixArrowButton)is specified by the -classname switch
inside the main body of the declaration. The class name is used only to specify options in the
TK option database. For example, the following commands specifies the TixArrowButton
widget instances should have the default value up for their —~direction option and the
default value normal for their —state option.

6.3. WRITING METHODS 57

option add *TixArrowButton.direction up
option add *TixArrowButton.state normal

Notice the difference in the capitalization of the class name and the command name of
the TixArrowButton class: both of them has the individual words capitalized, but the
command name (tixArrowButton)starts with a lower case letter while the class name
(TixArrowButton) starts with an upper case letter. When you create your own classes,
you should follow this naming convention.

The -superclass switch specifies the superclass of the new widget. In our example, we
have set it to tixPrimitive. Again, pay attention to the capitalization: we should use the
command name of the superclass, not its class name.

6.3 Writing Methods

After we have declared the new widget class, we can write methods for this class to define
its behavior. Methods are just a special type of TCL procedures and they are created by
the proc command. There are, however, three requirements for methods. First, their names
must be prefixed by the command name of their class. Second, they must accept at least
one argument and the first argument that they accept must be called w. Third, the first
command executed inside each method must be

upvar #0 $w data

For example, the following is an implementation of the invert method for the class
TixArrowButton:

proc tixArrowButton::invert {w} {
upvar #0 $w data

set curDirection $data(-direction)
case $curDirection {
n {
set newDirection s
¥
s {
set newDirection n
¥
....

}

Notice that the name of the method is prefixed by the command name of the class (tixArrowButton).
Also, the first and only argument that it accepts 1s w and the first line 1t executes is “upvar
#0 $w data”.

The argument w specifies which widget instance this method should act upon. For
example, if the user has issued the command

58 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING
.up invert

on an instance .up of the class tixArrowButton, the method tixArrowButton: :invert will
be called and the argument w will have the value .up.

The invert method is used to invert the direction of the arrow. Therefore, it should
examine the variable .up(-direction), which stores the current direction of the instance
.up, and modify it appropriately. It turns out that in TCL, the only clean way to access an
array whose name is stored in a variable is the “upvar #0 $w data” technique: essentially
it tells the intepreter that the array data should be an alias for the global array whose name
is stored in $w. We will soon see how the widget’s methods use the data array.

Once the mysterious “upvar #0 $w data” line is explained, it becomes clear what the
rest of the tixArrowButton: :invert method does: it examines the current direction of the
arrow, which 1s stored in $data(-direction) and inverts it.

6.3.1 Declaring Public Methods

All the methods of a class are by default private methods and cannot be accessed by the
application programmer. If you want to make a method public, you can include its name
in the -method section of the class declaration. In our TixArrowButton example, we have
declared that the methods flash, invert and invoke are public methods and they can be
accessed by the application programmer. All other methods of the TixArrowButton class
will be private.

Usually, the names of private methods start with a capital letter with individual words
capitalized. The names of public methods start with a lowercase letter.

6.4 Standard Initialization Methods

Each new mega-widget class must supply three standard initialization methods. When
an instance of a Tix widget is created, three three methods will be called to initialize
this instance. The methods are InitWidgetRec, ConstructWidget and SetBindings and
they will be called in that order. The following sections show how these methods can be
implemented.

6.4.1 The InitWidgetRec Method

The purpose of the InitWidgetRec method is to initialize the variables of the widget in-
stance. For example, the following implementation of tixArrowButton: :InitWidgetRec
sets the count variable of each newly created instance to zero.

proc tixArrowButton::InitWidgetRec {w} {
upvar #0 $w data

set data(count) 0O

6.4. STANDARD INITIALIZATION METHODS 59

Earlier, we showed how each widget you create is associated with an array of the same
name. Within the methods, you always refer to this array through the name data —the
method then works properly in each instance of the widget.

Chaining Methods

The above implementation is not sufficient because our TixArrowButton class is derived
from TixPrimitive. The class derivation in Tix is basically an is-a relationship: TixArrow-
Button s @ TixPrimitive. TixPrimitive defines the method tixPrimitive: :InitWidgetRec
which sets up the instance variables of every instance of TixPrimitive. Since an instance
of TixArrowButton is also an instance of TixPrimitive, we need to make sure that the
instance variables defined by TixPrimitive are also properly initialized. The technique of
calling a method defined in a superclass is called the chaining of a method. The following
implementation does this correctly:

proc tixArrowButton::InitWidgetRec {w} {
upvar #0 $w data

tixPrimitive::InitWidgetRec $w
set data(count) 0

Notice that tixPrimitive: :InitWidgetRec is called before anything else is done. This way,
we can define new classes by means of successive refinement: we can first ask the superclass
to set up the instance variables, then we can modify some of those variables when necessary
and also define new variables.

The tixChainMethod call

The above implementation of tixArrowButton: :InitWidgetRec is correct but it may be
cumbersome if we want to switch superclasses. For example, suppose we want to create
a new base class TixArrowWidget, which presumably defines common attributes of any
class that have arrows in them. Then, instead of deriving TixArrowButton directly from
TixPrimitive, we decide to derive TixArrowButton from TixArrowWidget, which is in turn
derived from TixPrimitive:

tixWidgetClass tixArrowWidget {
-superclass tixPrimitive

b
tixWidgetClass tixArrowButton {
-superclass tixArrowWidget

60 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING

Now we would need to change all the method chaining calls in TixArrowButton from:
tixPrimitive: :SomeMethod

to:
tixArrowWidget: :SomeMethod

This may be a lot of work because you may have chained methods in many places in the
original implementation of TixArrowButton.

The tixChainMethod command solves this problem. It will automatically find a super-
class that defines the method we want to chain and calls this method for us. For example,
the following is a better implementation of tixArrowButton::InitWidgetRec that uses
tixChainMethod to avoid calling tixPrimitive: :InitWidgetRec directly:

proc tixArrowButton::InitWidgetRec {w} {
upvar #0 $w data

tixChainMethod $w InitWidgetRec
set data(count) 0

Notice the order of the arguments for tixChainMethod: the name of the instance, $w, is
passed before the method we want to chain, InitWidgetRec. In general, if the method we
want to chain has 1 4+ n arguments:

proc tixPrimitive::MethodToChain {w argl arg2 ... argn} {
}

We call it with the arguments in the following order
tixChainMethod $w MethodToChain $argl $arg2 ... $argn

We’'ll come back to more detailed discussion of tixChainMethod shortly. For the time
being, let’s take it for granted that tixChainMethod must be used in the three standard
initialization methods: InitWidgetRec, ConstructWidget and SetBindings

6.4.2 The ConstructWidget Method

The ConstructWidget method is used to creates the components of a widget instance. In
the case of TixArrowButton, we want to create a new button subwidget, whose name is
button, and use a bitmap to display an arrow on this button. Assuming the bitmap files
are stored in the files up.xbm, down.xbm, left.xbm and right.xbm, the string substitution
0$data(-direction).xbm will give us the appropriate bitmap depending on the current
direction option of the widget instance.

6.5. DECLARING AND USING VARIABLES 61

proc tixArrowButton::ConstructWidget {w} {
upvar #0 $w data

tixChainMethod $w ConstructWidget

set data(w:button) [button $w.button -bitmap @$data(-direction) .xbm]
pack $data(w:button) -expand yes -fill both

The tixArrowButton: : ConstructWidget method shown above sets the variable data(w:button)
to be the pathname of the button subwidget. As a convention of the Tix Intrinsics, we must
declare a public subwidget swid by storing its pathname in the variable data(w: swid).

6.4.3 The SetBindings Method

In your interface, you want to handle a lot of events in the subwidgets that make up your
mega-widget. For instance, when somebody presses the button in a TixArrowButton widget,
you want the button to handle the event. The SetBindings method is used to creates event
bindings for the components inside the mega-widget. In our TixArrowButton example, we
use the bind command to specify that the method tixArrowButton: : IncrCount should be
called each time when the user presses the first mouse button. As a result, we can count the
number of times the user has pressed on the button (obviously for no better reasons than
using it as a dumb example).

proc tixArrowButton::SetBindings {w} {
upvar #0 $w data

tixChainMethod $w SetBindings

bind $data(w:button) <1> "tixArrowButton::IncrCount $w"
¥

proc tixArrowButton::IncrCount {w} {
upvar #0 $w data

incr data(count)

6.5 Declaring and Using Variables

The private variables of a widget class do not need to be declared. In fact they can be initial-
ized and used anywhere by any method. Usually, however, general purpose private variables
are initialized by the InitWidgetRec method and subwidget variables are initialized in the
ConstructWidget method.

62 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING

We have seen in the tixArrowButton: : InitWidgetRec example that the private variable
data(count) was initialized there. Also, the private variable data(w:button) was initial-
ized in tixArrowButton: : ConstructWidget and subsequently used in tixArrowButton: :SetBindings.

In contrast, public variables must be declared inside the class declaration. The following
arguments are used to declare the public variables and specify various options for them:

o —flag: As shown in the class declaration in figure 6.1, the -flag argument declares
all the public variables of the TixArrowButton class, —-direction and -state

e —configspec: We can use the —configspec argument to specify the details of each
public variable. For example, the following declaration

-configspec {
{-direction direction Direction e}
{-state state State normal}

¥

specifies that the ~direction variable has the resource name direction and resource
class Direction; its default value is e. The application programmer can assign value
to this variable by using the —direction option in the command line or by specifying
resources in the Tk option database with its resource name or class. The declaration
of —state installs similar definitions for that variable.

e -alias: The —alias argument is used to specify alternative names for public variables.
In our example, the setting

-alias {
{-dir -direction}

}

specifies that —dir i1s the same variable as —direction. Therefore, when the applica-
tion issue the command

.up config -dir w
it 1s the same as issuing
.up config -direction w

The -alias option provides only an alternative name for the application programmer.
Inside the widget’s implementation code, the variable is still accessed as data(-direction),
not data(-dir).

6.5.1 Initialization of Public Variables

When a widget instance is created, all of its public variables are initialized by the Tix
Intrinsics before the InitWidgetRec method is called. Therefore, InitWidgetRec and any
other method of this widgte instance are free to assume that all the public variables have
been properly initialized and use them as such.

The public variables are initialized by the following criteria.

6.5. DECLARING AND USING VARIABLES 63

e Step 1: If the value of the variable is specified by the creation command, this value
is used. For example, if the application programmer has created an instance in the
following way:

tixArrowButton .arr -direction n

The value n will be used for the -direction variable.

e Step 2: if step 1 fails but the value of the variable is specified in the options database,
that value is used. For example, if the user has created an instance in the following
way:

option add *TixArrowButton.direction w
tixArrowButton .arr

The value w will be used for the —-direction variable.

o Step3: if step 2 also fails, the default value specified in the —configspec secton of the
class declaration will be used.

Type Checker

You can use a type ckecker procedure to check whether the user has supplied a value of the
correct type for a public variable. The type checker is specified in the ~configspec section
of the class declaration after the default value. The following code specifies the type checker
procedure CheckDirection for the ~direction variable:

-configspec {
{-direction direction Direction e CheckDirection}
{-state state State normal}

¥
¥
proc CheckDirection {dir} {
if {[lsearch {n s w e} $dir] '= -1} {
return $dir
} else {

error "wrong direction value \"$dir\""

Notice that no type checker has been specified for the —state variable and thus its value
will not be checked.

If a type checker procedure is specified for a public variable, this procedure will be called
once the value of a public variable is determined by the three steps mentioned above.

64 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING

6.5.2 Public Variable Configuration Methods

After a widget instance is created, the user can assign new values to the public variables using
the configure method. For example, the following code changes the ~direction variable of
the .arr instance to n.

.arr configure -direction n

In order for configuration to work, you have to define a configuration method that does
what the programmer expects. The configuration method of a public variable is invoked
whenever the user calls the configure method to change the value of this variable. The name
of a configuration method must be the name of the public variable prefixed by the creation
command of the class and ::config. For example, the name configuration method for the
-direction variable of the TixArrowButton class is tixArrowButton: :config-direction.
The following code implements this method:

proc tixArrowButton::config-direction {w value} {
upvar #0 $w data

$data(w:button) config -bitmap @$value.xbm

Notice that when tixArrowButton::config-directionis called, the value parameter con-
tains the new value of the —direction variable but data(-direction) contains the old
value. This is useful when the configuration method needs to check the previous value of
the variable before taking in the new value.

If a type checker is defined for a variable, it will be called before the configuration
method 1s called. Therefore, the configuration method can assume that the type of the
value parameter is got i1s always correct.

Sometimes it is necessary to override the value supplied by the user. The following code
illustrates this idea:

proc tixArrowButton::config-direction {w value} {
upvar #0 $w data

if {$value == "n"} {
set value s
set data(-direction) $value

}

$data(w:button) config -bitmap @$value.xbm
return $data(-direction)

Notice the above code always overrides values of n to s. If you need to override the value,
you must do the following two things:

6.6. SUMMARY OF WIDGET INSTANCE INITIALIZATION 65

o Explicitly set the instance variable inside the configuration method (the set data(-direction)
$value line).

e Return the modified value from the configuration method.

If you do not need to override the value, you don’t need to return anything from the
configuration method. In this case, the Tix Intrinsics will assign the new value to the
instance variable for you.

Configuration Methods and Public Variable Initialization

For efficiency reasons, the configuration methods are not called during the intialization of the
public variables. If you want to force the configuration method to be called for a particular
public variable, you can specify it in the —forcecall section of the class declaration. In
the following example, we force the configuration method of the ~direction variable to be
called during intialization:

-forcecall {
—-direction

}

6.6 Summary of Widget Instance Initialization

The creation of a widget instance is a complex process. You must understand how it works
in order to write your widget classes. The following is the steps taken by the Tix Intrinsics
when a widget instance is created:

e When the user creates an instance, the public variables are intilized as discussed in
section 6.5.1. Type checkers are always called if they are specified. Configuration
methods are called only if they are specified in the -forcecall section.

e The InitWidgetRec method is called. It should initialize private variable, possibly
according to the values the public variables.

e The ConstructWidget method is called. It should create the component widgets. It
should also store the names of public subwidgets into the subwidget variables.

e The SetBinding method is called. It should create bindings for the component wid-
gets.

After the above steps, the creation of the instance is complete and the user can iterate with
1t using its widget command.

66 CHAPTER 6. TIX OBJECT ORIENTED PROGRAMMING
6.7 Loading the New Classes

Usually, you can use a separate script file to store the implementaion of each new widget
class. If you have several of those files, it will be a good idea to group the files into a single
directory and create a tclIndex file for them so that the new classes can be auto-loaded.

Suppose you have put the class files into the directory /usr/my/tix/classes. You can
create the tclIndex file using the tools/tixindex program that comes with Tix:

cd /usr/my/tix/classes
/usr/my/Tix4.0/tools/tixindex *.tcl

The tclIndex file must be created by the tixindex program. You cannot use the standard
automkindex command that comes with Tcl.

Once you have created the tclIndex file, you can use your new widget classes by auto-
loading. Here is a small demo program that uses the new TixArrowButton class:

#!/usr/local/bin/tixwish
lappend auto_path /usr/my/tix/classes

Now I can use my TixArrowButton class!
#

tixArrowButton .arr -direction n

pack .arr

